An Algorithm to Coordinate Measurements Using Stochastic Human Mobility Patterns in Large-Scale Participatory Sensing Settings
نویسندگان
چکیده
Participatory sensing is a promising new low-cost approach for collecting environmental data. However, current large-scale environmental participatory sensing campaigns typically do not coordinate the measurements of participants, which can lead to gaps or redundancy in the collected data. While some work has considered this problem, it has made several unrealistic assumptions. In particular, it assumes that complete and accurate knowledge about the participants future movements is available and it does not consider constraints on the number of measurements a user is willing to take. To address these shortcomings, we develop a computationally-efficient coordination algorithm (Bestmatch) to suggest to users where and when to take measurements. Our algorithm exploits human mobility patterns, but explicitly considers the inherent uncertainty of these patterns. We empirically evaluate our algorithm on a real-world human mobility and air quality dataset and show that it outperforms the state-of-the-art greedy and pull-based proximity algorithms in dynamic envi-
منابع مشابه
Coordinating Measurements for Air Pollution Monitoring in Participatory Sensing Settings
Environmental monitoring is important, as it allows authorities to understand the impact of potentially harmful environmental phenomena, such as air pollution, noise or temperature, on public health. To achieve this effectively, participatory sensing is a promising paradigm for large-scale data collection. In this approach, ordinary citizens (non-expert contributors) collect environmental data ...
متن کاملCoordinating measurements for environmental monitoring in uncertain participatory sensing settings
Environmental monitoring allows authorities to understand the impact of potentially harmful phenomena, such as air pollution, excessive noise and radiation. Recently, there has been considerable interest in participatory sensing as a paradigm for such large-scale data collection because it is cost-effective and able to capture more fine-grained data than traditional approaches that use stationa...
متن کاملUnmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing
Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...
متن کاملAn Empirical Study of Combining Participatory and Physical Sensing to Better Understand and Improve Urban Mobility Networks
The rapid rise of location-based services provides us an opportunity to achieve the information of human mobility, in the form of participatory sensing, where users can share their digital footprints (i.e., checkins) at different geo-locations (i.e., venues) with timestamps. These checkins provide a broad citywide coverage, but the instant number of checkins in urban areas is still limited. Sma...
متن کاملPrivacy-Preserving Collaborative Blind Macro-Calibration of Environmental Sensors in Participatory Sensing
The ubiquity of ever-connected smartphones has lead to new sensing paradigms that promise environmental monitoring in unprecedented temporal and spatial resolution. Everyday people may use low-cost sensors to collect environmental data. However, measurement errors increase over time, especially with low-cost air quality sensors. Therefore, regular calibration is important. On a larger scale and...
متن کامل